The Most Accurate AI Content Detector
Try Our AI Detector
AI Writing

What Is Machine Learning

Machine Learning (ML) is an aspect of Artificial Intelligence (AI) that uses algorithms and data to enable machines and computers to learn automatically. It basically helps machines and computers to predict outcomes accurately. Machine learning originated in the early 1950s with the evolvement of simple algorithms from pre-1950s statistical methods. Then this evolved into reinforcement

Trusted By Industry Leaders
Trusted By Industry Leaders

Introduction

Our text compare tool is a fantastic, lightweight tool that provides plagiarism checks between two documents. Whether you are a student, blogger or publisher, this tool offers a great solution to detect and compare similarities between any two pieces of text. In this article, I will discuss the different ways to use the tool, the primary features of the tool and who this tool is for. There is an FAQ at the bottom if you run into any issues when trying to use the tool.

What makes Originality.ai’s text comparison tool stand out?

Keyword density helper – This tool comes with a built-in keyword density helper in some ways similar to the likes of SurferSEO or MarketMuse the difference being, ours is free! This feature shows the user the frequency of single or two word keywords in a document, meaning you can easily compare an article you have written against a competitor to see the major differences in keyword densities. This is especially useful for SEO’s who are looking to optimize their blog content for search engines and improve the blog’s visibility.

Ways to compare

File compare – Text comparison between files is a breeze with our tool. Simply select the files you would like to compare, hit “Upload” and our tool will automatically insert the content into the text area, then simply hit “Compare” and let our tool show you where the differences in the text are. By uploading a file, you can still check the keyword density in your content.

URL compare

Comparing text between URLs is effortless with our tool. Simply paste the URL you would like to get the content from (in our example we use a fantastic blog post by Sherice Jacob found here) hit “Submit URL” and our tool will automatically retrieve the contents of the page and paste it into the text area, then simply click “Compare” and let our tool highlight the difference between the URLs. This feature is especially useful for checking keyword density between pages!

Simple text compare

You can also easily compare text by copying and pasting it into each field, as demonstrated below.

Features of Originality.ai’s Text Compare Tool

Ease of use

Our text compare tool is created with the user in mind, it is designed to be accessible to everyone. Our tool allows users to upload files or enter a URL to extract text, this along with the lightweight design ensures a seamless experience. The interface is simple and straightforward, making it easy for users to compare text and detect the diff.

Multiple text file format support

Our tool provides support for a variety of different text files and microsoft word formats including pdf file, .docx, .odt, .doc, and .txt, giving users the ability to compare text from different sources with ease. This makes it a great solution for students, bloggers, and publishers who are looking for file comparison in different formats.

Protects intellectual property

Our text comparison tool helps you protect your intellectual property and helps prevent plagiarism. This tool provides an accurate comparison of texts, making it easy to ensure that your work is original and not copied from other sources. Our tool is a valuable resource for anyone looking to maintain the originality of their content.

User Data Privacy

Our text compare tool is secure and protects user data privacy. No data is ever saved to the tool, the users’ text is only scanned and pasted into the tool’s text area. This makes certain that users can use our tool with confidence, knowing their data is safe and secure.

Compatibility

Our text comparison tool is designed to work seamlessly across all size devices, ensuring maximum compatibility no matter your screen size. Whether you are using a large desktop monitor, a small laptop, a tablet or a smartphone, this tool adjusts to your screen size. This means that users can compare texts and detect the diff anywhere without the need for specialized hardware or software. This level of accessibility makes it an ideal solution for students or bloggers who value the originality of their work and need to compare text online anywhere at any time.

Machine Learning (ML) is an aspect of Artificial Intelligence (AI) that uses algorithms and data to enable machines and computers to learn automatically. It basically helps machines and computers to predict outcomes accurately.

Machine learning originated in the early 1950s with the evolvement of simple algorithms from pre-1950s statistical methods. Then this evolved into reinforcement learning in the 1960s and the pioneering research on neural networks in the late 1970s and early 1980s.

In the 90s, the data-driven approach to machine learning emerged, with Support-vector machines (SVMs) and Recurrent Neural Networks (RNNs) becoming popular. The early 2000s gave rise to unsupervised machine learning and kernel methods like Support-Vector Clustering (SVC). Deep learning became popular in the 2010s, and machine learning began to find its usage in various software applications that are now used in everyday life.

Nowadays, Machine learning is all around us. From social media recommendation engines, like the ones on Netflix, to self-driving cars, fraud detection, and the voice assistants on our phones. It’s all thanks to ML.  

Types of Machine Learning

There are three types of Machine Learning. They are:

1) Supervised learning: Supervised machine learning uses labeled datasets for training algorithms that can predict outcomes and classify data. Each data point has been labeled, with system instructions available on specific outputs for each particular input. The machine is fed with the labeled data to the point that it becomes accurate at predicting unlabeled data.    

Neural networks are the most popular supervised learning algorithms. Other supervised learning algorithms include decision trees, Naïve Bayes, decision trees, linear regression, and logistic regression.

2)  Unsupervised learning: Unsupervised machine learning uses algorithms to learn, conduct data analysis and predict patterns from unlabeled data. Real-world application of unsupervised learning includes use cases such as anomaly detection, object recognition, and recommendation engines.    

3)  Reinforcement learning: Reinforcement learning is a machine learning technique that implements feedback to ensure that machines or computers make the right decisions. The machine is rewarded or penalized for making decisions. This effectively strengthens the decision-making process of the model. Reinforcement learning algorithms include Monte Carlo methods, brute force approach, value function, criterion of optimality, etc.  

Applications of Machine Learning

Machine learning is applicable and relevant in many practical ways. Here are some ways that machine learning has been applied worldwide:  

  1. Recommendation Engines: Companies like Netflix use machine learning to recommend the right movies and TV shows to their customers. Social media companies like Facebook and Twitter use machine learning to curate user feeds, friend suggestions, page suggestions, etc.
  2. Speech recognition and translation: Machine learning algorithms can interpret live speech, convert them to text and even translate them to other languages. Voice assistants like Amazon’s Alexa and Apple’s Siri work with this.
  3. Predictive analysis: Machine learning algorithms can predict trends and patterns in consumer behavior, weather patterns, and stock market trends. Stock trading companies, B2C companies, and advertisers use these predictive modeling algorithms. They also work for other things like real estate pricing and product development.
  4. Medical diagnosis: Machine learning algorithms are fantastic at facial recognition, and this has helped software to identify diseases and ailments by merely looking at photos. Also, popular medical websites now use AI chatbots to help answer patient inquiries very fast.
  5. Email spam filters: Email providers train machine learning systems using massive datasets of emails to detect spam emails better. These spam filters use tree-induction, rule-based, and multilayer machine-learning techniques on big data. This is why Gmail and other email providers are more efficient at detecting spam than ever before.
  6. Data mining and extraction: Machine learning can extract useful information from large datasets. In the medical field, this feature is used to identify cancerous cells from cancer imaging.
  7. Customer support bots: Machine learning has helped develop intuitive chatbots that can provide quick, relevant answers to customer queries. Several websites now use these bots. Chatbots like OpenAI’s ChatGPT use supervised and reinforcement learning techniques to finetune them.
  8. Self-driving cars: Self-driving cars use machine learning algorithms to collect and process data from cameras and other sensors around a vehicle. Computer vision uses machine learning and artificial intelligence to help cars detect objects, classify them and interpret them.

How Machine Learning Works with AI Content Generation

Machine learning isn’t the same as artificial intelligence! While machine learning is an aspect of artificial intelligence, artificial intelligence combines deep learning, machine learning, and other intuitive techniques to enable computers to reason like humans and perform humanoid tasks.  

Machine learning is how a computer becomes intelligent. The intelligent computer then uses artificial intelligence to think like humans and perform human-like tasks.

That said, Machine learning has found its relevance in AI content generation through autoregressive language models like the popular  OpenAI’s GPT-3 and others. Perhaps a great implementation of this AI content generation is the amazing ChatGPT.

AI content generators can generate text as humans do. How does this work?

Well, AI content generators are powered by large language models. These large language models use unsupervised learning to learn from billions of texts. Thus, they can imitate human writing patterns and generate coherent written text, be it a blog post, product description, essay, poetry, business plan, letter, email, ad copy, or short story.

Training the models involves additional work like data classification, dimensionality reduction, and ensemble methods for an optimal model.  

Now, GPT-3 and other recent language models are getting better at modifying their tone and voice as needed, just like humans. So, you could tell the aforementioned ChatGPT to compose text in Shakespearean English or like a 5-year-old with a limited vocabulary.    

AI content generators now come with additional features like SEO tools, plagiarism detectors, API access, style guide, content brief, content outline, etc.

Conclusion

Machine learning is still in its early stage and has already made a significant impact with several applications to real-world solutions. More researchers are entering the machine learning field. Better and faster GPUs and CPUs are being built with special consideration for their machine-learning capabilities. The future of tech looks exciting, thanks to machine learning.  

FAQ

What are the different types of machine learning?

The three different types of machine learning are supervised learning, unsupervised learning, and reinforcement learning.

How does AI generate content?

AI generates content by learning from preexisting content and then generating brand-new content based on what it learned. AI content creators learn using various machine learning techniques and natural language processing (NLP) models.

How does machine learning differ from artificial intelligence?

Machine learning is a subset or branch of artificial intelligence. Artificial intelligence covers machine learning, deep learning, computer vision, robotics, and other techniques that allow computers to perform tasks usually associated with humans.

How can I get started with learning about machine learning?

First, you’ll need to learn and understand basic concepts like statistics and probability, linear algebra, and calculus. Then, you’ll need to learn a programming language like Python. Following that, you’ll move to data processing before you start working on basic datasets. Online courses, tutorials, and books will help you with a structured learning path.    

What are some ethical reasons concerning the use of machine learning?

Some ethical issues in machine learning usage are bias or discrimination, transparency, privacy and surveillance, security and safety, moderation protocols, human decision-making, ownership, and environmental impact.

Jonathan Gillham

Founder / CEO of Originality.ai I have been involved in the SEO and Content Marketing world for over a decade. My career started with a portfolio of content sites, recently I sold 2 content marketing agencies and I am the Co-Founder of MotionInvest.com, the leading place to buy and sell content websites. Through these experiences I understand what web publishers need when it comes to verifying content is original. I am not For or Against AI content, I think it has a place in everyones content strategy. However, I believe you as the publisher should be the one making the decision on when to use AI content. Our Originality checking tool has been built with serious web publishers in mind!

Frequently Asked Questions

Do I have to fill out the entire form?

No, that’s one of the benefits, only fill out the areas which you think will be relevant to the prompts you require.

Why is the English so poor for some prompts?

When making the tool we had to make each prompt as general as possible to be able to include every kind of input. Not to worry though ChatGPT is smart and will still understand the prompt.

In The Press

Originality.ai has been featured for its accurate ability to detect GPT-3, Chat GPT and GPT-4 generated content. See some of the coverage below…

View All Press
Featured by Leading Publications

Originality.ai did a fantastic job on all three prompts, precisely detecting them as AI-written. Additionally, after I checked with actual human-written textual content, it did determine it as 100% human-generated, which is important.

Vahan Petrosyan

searchenginejournal.com

I use this tool most frequently to check for AI content personally. My most frequent use-case is checking content submitted by freelance writers we work with for AI and plagiarism.

Tom Demers

searchengineland.com

After extensive research and testing, we determined Originality.ai to be the most accurate technology.

Rock Content Team

rockcontent.com

Jon Gillham, Founder of Originality.ai came up with a tool to detect whether the content is written by humans or AI tools. It’s built on such technology that can specifically detect content by ChatGPT-3 — by giving you a spam score of 0-100, with an accuracy of 94%.

Felix Rose-Collins

ranktracker.com

ChatGPT lacks empathy and originality. It’s also recognized as AI-generated content most of the time by plagiarism and AI detectors like Originality.ai

Ashley Stahl

forbes.com

Originality.ai Do give them a shot! 

Sri Krishna

venturebeat.com

For web publishers, Originality.ai will enable you to scan your content seamlessly, see who has checked it previously, and detect if an AI-powered tool was implored.

Industry Trends

analyticsinsight.net

More From The Blog

Al Content Detector & Plagiarism Checker for Marketers and Writers

Use our leading tools to ensure you can hit publish with integrity!